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This paper describes a new and promising technique for variance reduction in Monte 
Carlo computer simulations. This method, originally devised by Chorin in 1971, utilizes or- 
thonormal Hermite polynomials as basis functions to form an approximation to the desired 
estimate. By properly applying this approach, estimates of much higher precision can be 
obtained so that the resulting Monte Carlo simulation exhibits an acceleration towards 
convergence which, furthermore, can be controlled by initial choices of certain adjustable 
parameters. The theory is thoroughly developed from first principles and simulation results 
are presented for both five- and twelve-variable model problems. 

INTRODUCTION 

Monte Carlo computations are frequently employed to obtain approximate values 
for statistical quantities such as the mean and variance of a desired (output) distri- 
bution. This approach is used since, in all but the simplest cases, the necessary 
integrals cannot be evaluated in closed form while, for problems with even a moderate 
number of input random variables (~3 to 5 say), direct numerical evaluation of the 
multi-dimensional integrals can be awkward and time consuming. Thus, one adopts 
a Monte Carlo approach in order to provide a statistically realistic simulation and 
accepts, however, the inherent shortcoming of results with rather low precision 
(i.e., limited accuracy). 

The point of view taken in this paper is to regard Monte Carlo computations as a 
form of numerical quadrature [l, 21 with the only difference between Monte Carlo 
integration and conventional numerical integration being the method of dividing 
up the region of integration. With standard numerical integration packages, this 
division is usually performed in a regular fashion after, possibly, some initial transfor- 
mation of variables. With Monte Carlo computations, however, an element of chance 
is included since sample values are determined using a pseudo random number 
generator [l, 31. But, with the introduction of random number generators having 
special regularity properties [4], even the “chance mechanism” can be made less 
important. 

A new and promising technique to reduce the error variance of Monte Carlo 
simulations is described in this paper. This method of variance reduction (or, 
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equivalently, convergence acceleration) incorporates orthonormal function space 
expansions [3] in a procedure originally edveloped by Chorin [5] for evaluating one- 
dimensional problems in mathematical statistics. Recently, the Chorin method has 
been extended to multi-dimensional problems and several refinements to the basic 
Chorin procedure have been devised which can further reduce the Monte Carlo 
simulation errors for a wide class of linear and nonlinear problems (see also [6]). 
These refinements include: 

(i) Using equal probability increment (so-called regulated) random numbers 
for low dimensional problems and their counterpart, equidistributed random numbers 
[4], in higher dimensions. In fact, this refinement has both theoretical justification [7] 
and practical importance; the latter has indeed been confirmed in all our Monte Carlo 
computer experiments. 

(ii) Partitioning the set of samples-the so-called sample space-into subsets 
of equal or unequal size, forming various initial Chorin estimates, and obtaining a 
final composite estimate by averaging. 

(iii) Optimizing the set of terms retained in an approximate series expansion 
using orthonormal polynomials. Presently, an adaptive series selection algorithm is 
being developed by the authors so that the computer can automatically perform this 
optimization for a wide class of problems. 

As is known, it is possible to improve the ordinary Monte Carlo estimate by the use 
of certain approximating (smoothing) functions [3, 51. In this paper, these basis 
functions are the multi-dimensional orthonormal Hermite polynomials [5, 81 which 
are used to form an approximation to the desired estimate. Previously, Hermite series 
expansions have been successfully applied to noise analysis problems [9] and to 
tracking filter simulation studies [IO]. 

This paper is organized as follows. First, the basic Chorin estimator is developed 
from first principles and an expression for the Chorin error variance uc2 is obtained. 
Then, using this formula, it is shown how the sampling scheme can be modified to 
further reduce this error variance. Next, the so-called symmetric (SC) and tri- 
symmetric (TX) extensions of the Chorin estimator are discussed; it is shown that the 
TSC estimate yields a universally smaller Monte Carlo error variance than the basic 
Chorin estimate. After these theoretical developments, the technique we utilized to 
generate equidistributed random numbers is presented. Then, simulation results are 
described in detail for two model problems 

1. The so-called Bullet Problem which represents a one-dimensional reentry 
trajectory having 5 random perturbation variables. 

2. The so-called Deployment Dispersion Problem which models the dispersion 
of coasting trajectories after separation from a post-boost vehicle. This problem 
contains 12 random variables. 

Next, a preliminary approach to an adaptive series selection algorithm is discussed 
and, finally, some practical considerations for computing with these advanced Monte 
Carlo estimators are outlined. 
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THEORETICAL BACKGROUND 

In all Monte Carlo computations, the numerical error is a random variable. 
With the assumption of a “perfect” random number generator producing sample 
values at the input, the numerical error in the computations contains no bias and, 
after a large number (N) of individual trajectories, becomes asymptotically normally 
distributed. In ordinary (or direct) Monte Carlo, the error variance, as is well known, 
diminishes by the factor N-l. The purpose then of variance reduction is to find Monte 
Carlo estimates which further reduce this error. These accelerated estimates conse- 
quently have higher precision than ordinary Monte Carlo estimates using the same 
number of sample trajectories. 

Since all Monte Carlo computations can be regarded as an approximate form of 
numerical quadrature, this suggests that it should be possible to find estimates 
(for example, of the mean of a random function) which are better than those given by 
ordinary Monte Carlo procedures. 

Presently, many methods are known for reducing the error variance in Monte Carlo 
computations. The class of methods described here is of the control variate type. 
The basic control variate method of variance reduction proceeds as follows. The 
ordinary Monte Carlo estimate 

wheref; = f(xJ for statistically independent samples 

is replaced by the control variate estimate 

f = -ml + & f (J;: - iTi) 
1 

where the function g is chosen to approximate (or “mimic”) the function f and, 
furthermore, to enable a closed form determination of E[ g]. Whereas, in ordinary 
Monte Carlo, the computational error variance is 

2 up 
U'MC = - & UD2 

N (3) 

with 02 h Var[f] = E[f2] - (E[f])2, the control variate estimate has numerical error 
variance 
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with cr& = Var[f - g]. If the function g is chosen carefully, then it will turn out that 
4Y < a2 giving variance reduction. 

A problem with the control variate method is that it is usually not obvious, espe- 
cially for high-dimensional problems, how to make a good choice for the mimic 
function g. The method we use, following Chorin [5], is to use a parametric family of 
functions 

g = f ai@i 

0 

(5) 

where ‘-Pi = @i(X) belong to an orthonormal set, i.e., E[@@J = Sij . In particular, 
we use the triangle family of polynomial functions where x is a gauss vector all of 
whose components have mean zero, variance one and are uncorrelated. 

With this choice for the elements of x, the Qii are then the orthonormal Hermite 
polynomials. For the single parameter case withp = 1 

@, = 1 

CD1 = x 

CD, = & (x2 - 1) 

C&c-- (6;l,2 (x3 - 3-d 

CD4 = __ (24;l,2 (x4 - 6~’ + 3) 

For this case, the recursion formula 

@r&+1(4 = (n ;l)l,~ @n(x) - (&)li2 @n-d-4; n>l (7) 

is most useful. 
In the multi-parameter case ( p > I), the general orthonormal Hermite polynomial 

is of the form @Jx,) @,,(x2) ... @Jxz)) with a restriction on the total order such that 
11 + 12 + .a-+~, <n. 

For finite second moment functions-that is, for integrable functions such that 
E[I f I”] < co, the series given by Eq. (5) above converges in mean square, 
Ii%+, H1.f - g, I21 = 0, where g, = Cy aiQi and a, = E[f@J. Therefore, the 
function g = f in this stochastic sense. The desired mean is a, since a0 = 1. To use 
g, for some m > 1 requires the evaluation of a, 1.. a, . This is done by ordinary 
Monte Carlo using M additional samples x’ as 
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The mimic function now becomes 

f. = f @Di 
0 

and the final estimator f* (the basic Chorin estimator) is 

349 

(9) 

(10) 

where 

f”’ = A&x:) 
1 

.fi =.f(xJ 

and 

This estimate uses N = 2M independent samples (x1 , x2 ,..., x,+,) and (xi, x6 ,..., XL). 
Notice that this estimator is linear in f and can also be written in the form 

f * = t”P +f> -fo 
=20-I (11) 

where D is the N-sample “direct (0) estimate” 

D = & [f/(x,) + ~.Rx:)] 
1 1 

and I is the M-sample “indirect (I) estimate” 

(12) 

(13) 

wherefo(xi) is given by Eq. (9) above. 

CHOR~N ESTIMATOR STATISTICS 

The new estimate f * is unbiased, that is 

since 
Hf *1 = Hfl 

ELfI = EM,1 = Hf 1. 
(14) 
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The error variance is most conveniently obtained by first writingf * in yet another form 
as follows 

(15) 

where 

and 

Noticef, = di + Of, so that Afo is an estimate of the residualf- E[j]. In this form 
it is clear thatf* is a two step Monte Carlo since M-samples are drawn first to estimate 
the coefficients in the “corrector series” Afo and then M additional samples are drawn 
to form the estimate pi. There will be a net variance reduction if the corrector series 
approximates Of well in the stochastic sense defined earlier. 

The corrector series is unbiased since EIAfo] = 0 and the error variance is 

uc2 = Var[f*] 

= M-l{u2 + E[(Af,)2] - 2E[fAf,l) (16) 

where, by orthogonality, 

and, by projection, 

By definition, 

E[(4J21 = M-l VaW&l + (W@d” 

and, since E[d,] = E[fOk] A al, , the exact Chorin variance is then 

uc2 = M-’ R, + M-l t uk2 
1 1 

where, by orthogonality, 

(17) 

(18) 

(19) 

R, = u2 - f ak2 = f aR 
1 m+l 
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and 

Here R, is the mean square remainder in the m-truncated series expansion and will 
vanish as m --f co. Since the coefficients a, = E[f@,J are estimated, there is an added 
“penalty term” M-2 Cy uk2 where uk2 is the single sample error variance in the 
Monte Carlo estimate of ak . Thus, the basic Chorin error variance has the general 
form 

uc2 = AM-’ -+ BM-2 (20) 

where the quantity A = R, is monotonically non-increasing as m + co and B is 
monotonically non-decreasing as m + co. Furthermore, N = 2M sample trajectories 
are used in the complete Monte Carlo run. 

DISPROPORTIONATE SAMPLING 

The basic Chorin estimator can be generalized to the extent that N = 2M = 
M, + M, where M, samples are to be used for corrector series coefficient estimates and 
Ml samples are then used to determine the final estimate. By definition let M = (N/2). 
For a fixed series truncation point m, there is an optimum allocation of samples 
(M, , M,) defined by k, 0 < k < M where 

M,=M+k 

M2 = M-k. 

The optimum value of k is chosen to minimize the Chorin variance 

UC2 = AM,-’ -+ B(M,M,)-1 

= A(M + k)-’ + B(M” - k2)p1 (21) 

Since both A and B are non-negative, setting the derivative dc+“/dk = 0 yields 

(M - k)2 = 2 (+) k 

for the unique optimal value of k. The ratio R 4 (B/A) can be estimated by the same 
N samples as 

Solving the above quadratic for the appropriate root and using i? in place of R gives 

&*t = & + M - (a2 + 219M)l12 (23) 
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SYMMETRIZATION 

Disproportionate sampling depends upon how well the ratio R is estimated by A. 
As an alternative to optimizing the allocation of samples, the Chorin estimator can be 
symmetrized in order to make better use of all the samples. For example, suppose 
two Chorin estimators are formed 

f: = f*(S, S’> 
(24) 

f 2* = f*v’, 8 

using the statistically independent sample sets 

s = {Xi ) i = 1, 2 ,...) M} 

s’ = {xi, i = 1, 2 )...) M} 

Their average defines a “symmetrized Chorin estimate” 

fE=fC+f”* 
2 

This estimate has error variance 

(25) 

& = S(&, + covLf:, fz*l) (26) 

where c& is the error variance for the estimate f f (and f z as well). The covariance 
term can be reduced to 

COVK, f ,*I = a& &I (27) 

To show this, apply the definition 

Cov[f,*, f ,*I = W,*f ,*I - (ml)“, (28) 

use the form given by Eq. (15) for f T and f $, and expand E[f ff$] in (28) as follows 

Jw,*f ,*I = mY’1 - E[J.zkl - Gf’ &I + ELG &I. (29) 

In (29) notice that 

and 

4fl’l = 431 HP’1 = Wf I)” 

E[3 A&] = E[3’ 43;] = f E[P’dJ E[d$] = 0 
1 
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since E[&J = 0. Therefore (29) becomes 

-wxl = WI>” + &I &I 

and substituting (30) into (28) gives the desired result (27). 
Now use the definitions 

and substitute these into Eq. (27) to give 

Covv,*, f;] = f f E[&d$] E[dci;&] 
j=l k=l 

It can readily be shown that 

E[&&l = $ EV@$DJ 

E[@;] = & Eu@$jk] 

353 

(30) 

(31) 

(32) 

so that (32) becomes 

(33) 

Then, substituting Eq. (33) into (26) gives the final result, the exact error variance 
for the symmetrized Chorin estimate 

(34) 

which, for large M, is 

2 1 R 
CTSC z - r&, z 2 

2 N (35) 

This further asymptotic variance reduction is obtained at the expense of the additional 
second order penalty term shown in (34). 

We next show that it is possible to achieve the fully reduced asymptotic variance 
R,/N together with a simultaneous reduction in the second order penalty term of the 
basic Chorin estimator. This is done by partitioning the sample space into three 
statistically independent sets S, S’ and S” of A4 samples each 

s = (Xi, i = 1, 2 )...) M} 

s’ = {xl ) i = 1, 2 )...) M} 

As” = {x;, i = 1, 2 ,..., M} 
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and forming the three estimates 

f,* = f *v, f-3 
f,* = f *(s’, S”) (36) 

f,* = f*(Y, S) 

The average of these estimates then defines a “tri-symmetrized Chorin estimate,” 

f Tsc= fl”+fz*+f: 
3 (37) 

It is shown elsewhere [6] that the three estimates f f are mutually uncorrelated so 
that there is no additional penalty term. In addition, since N = 3M, the error variance 
for this estimate is 

2 d, 
uTSC = _ 3 (38) 

where ~2,~ is the Chorin variance for any one of the above three estimates. The final 
result for the exact TSC error variance is 

u’Tsc = AN-l + 3BN-” (39) 

which should be compared with 

UC2 = 2AN-1 + 4BN-” (20) 

for the basic Chorin estimator. 
Notice that both first and second order terms are smaller for the error variance 

associated with this estimate f gSic . Therefore, &,, < uc2 for all A, B and N and the 
basic Chorin estimator is not optimal. 

To summarize, the exact Monte Carlo error variance expressions are given below 
for the three estimators f *, f zc and f& . Note that, in all cases, the leading term 
gives an asymptotic (first order) value for large N + co. 

UC2 = 2AN-’ + 4BN-2 

u”sc = AN-’ + 2(B + C) N-’ 

u;sc = AN-l + 3BN-’ 

where 
co 

A = o2 - f ak2 & R, = c ak2 
1 rnfl 

(40) 
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and 

OVERVIEW 

Based upon the previous theoretical developments, the general situation is illustrated 
schematically in Fig. 1 where the Monte Carlo error variance aLc is sketched as a 
function of trajectory sample size N. Considering the estimand to be a polynomial 
of some degree n, the method of Ermakov and Zolotukhin [1 1, 121 can (theoretically) 
obtain exact correction and estimates with a& = 0 for N > n. Hence the curve 
labelled E - Z is shown as a possible lower boundary of the allowable region for 

N 

FIG. 1. Typical behavior for the Monte Carlo error variance u,& as a function of the number 
of sample trajectories N. Here D = Direct, C = Chorin, CT = Truncated Chorin, and E - 2 = 
Ermakov and Zolotukhin estimates. Various cross-over points N, , N,’ and Nz are also labelled. 
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variance reduction. The upper boundary is furnished by the direct estimate D. The 
desire, of course, is to simultaneously decrease both &, and N. 

For small N, the Chorin estimator initially exhibits a variance penalty but, at some 
value of N depending upon the particular function and correction series with suitably 
large m, q2 = uD2. This value of N is referred to as the fixed correction series 
“cross-over” point N, . For all N > N, , oc2 < oD2. 

Further reduction in variance can be obtained by optimizing the selection of terms 
retained in the corrector series. By dropping terms below a certain threshold (which 
is itself a function of N), a so-called Truncated Chorin estimate CT will have two 
cross-over points N,’ , N,” as shown. Thus, for low to moderate sample sizes, an 
advantage accrues if the approximate series expansion is simplified and shortened 
while, for large N, there is a variance penalty. 

EQUIDIWRIBUTED RANDOM NUMBERS 

In all Monte Carlo computer experiments, the sample values xi determined by the 
“random number generator” should fill the p-dimensional parameter space in a 
uniform manner. For low dimensional problems (p < 4 say), sampling can be done 
in a completely regular fashion with n samples per parameter spaced at equal 
probability increments. A full factorial sampling plan is then completed in the 
computer simulation yielding N = FP individual trajectories. Since iz > 4, the use of 
these so called “regulated random numbers” is perfectly feasible if p is small; in fact, 
excellent results have been obtained for p = 4. On the other hand, for larger values of 
p, a factorial sampling plan must be abandoned. 

While still attempting to maintain, however, a uniform distribution of sample values 
in the parameter space, we were then led to consider so called equidistributed random 
numbers [4]. In our computations, the successive prime numbers pi = 2, 3, 5, 7, 11, 
13, 17,... were used and, for 1 ,( k < N, the fractional part of k( pJ1lz calculated. 
The values ni & Frac(k(p,)1/2) so determined are then equidistributed in the unit 
interval (0 < ni < I) and, utilizing the well-known Box-Muller transformation [I] 

xi = (-2 In Q/2 cos(27~n~+~) 

xi+l = (-2 In H,)‘/~ sin(27rni+l), 
(41) 

normalized random variables with zero mean and unit variance are generated. 
For the two model problems to be described in the next section, the Monte Carlo 

experiments were performed using a variety of random number generators. In all cases, 
the most accurate and consistent results were obtained using the equidistributed 
random number generator described above. 

However, a problem does remain. Plots were made of several thousand successive 
points for 

(a) Frac(k(3)l12) vs Frac(k(2)1/2) 
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(b) Frac(k(1 I)‘/3 vs Frac(k(7)1/z), and 
(c) Frac(k( 1 3)‘i2) vs Frac(k( 1 I)‘/“). 

For case (a), the points filled the unit rectangle very uniformly and evenly; for the 
other two cases, however, the points formed narrow bands and left large regions of 
the unit rectangle empty. Results for case (c) are shown in Fig. 2 for 1 < k < iV 
with N = 4000. Examining this picture, it is easy to find the low-order resonance 
relation 

6(13)112 - 2(11)112 - 15 = 5.807 x 1O-5 g A 

which shows that for N > A-1 m 17221, the bands would merge and the unit rectangle 
would then be completely filled. For large N, however, new bands would reappear. 

Thus, in order to achieve truly equidistributed sample points in a p-dimensional 
unit “cube” without undesirable clustering, both the prime numbers pi and the total 
sample size N should be chosen with some care. These ideas are presently being 
investigated. 

FIG. 2. Clustering of successive points using an “equidistributed” random number generator. 
A total of 4000 points are plotted. 
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MODEL PROBLEMS 

Two model problems are treated in detail in this paper. The first is a simplified 
one-dimensional model for a ballistic reentry trajectory having random perturbations 
in the dynamics. This so-called “Bullet Problem” is defined by the differential 
equations 

*=olv+j? 

ti=yx+sv+E (42) 

and the nominal (/3 = E = 0) initial conditions x,, and u0 . Each of the 5 coefficients 
CY, /I, y, 6, E is non-time-varying but is assumed to have the form 

P = PO + P’ 

with a nominal value pa and a random component p’. Setting 

5 & (62 + 4Cxy)1/2 

and 
r 1) r, = &3 l [J = -7;l, -721 

for the two “time constants” 7i , the solution of (42) is 

x(t) = Clerl” + C2erzt + -2;y68 [e”” + e’2t 

with 

- 

(43) 

(44 

21 (45) 

(46) 

where x0 and u, = (l/a) z?(O) are the nominal initial conditions at t = 0 with both 
random noise terms /3 and E equal to zero. Also, using (42), 

u(r) = ; [it(r) - /q 

while &(t) is immediately computable from (45). 
For the simulations, the following nominal values 

a0 = 1.0 
pa = 0.0 
yo = -0.8 
So = -2.4 
E. = 0.0 
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were chosen for the five parameters. The corresponding time constants are then 
TV = 2.5, 72 = 0.5. Next, we wish to allow some variability in the parameter set 
(01, /3, y, 6, E) while maintaining the inequalities 

a>0 

s<o (47) 
-P/401 < y < 0 

so that the solution x(t), v(t) is indeed given by two decaying exponentials. 
Using the equidistributed random number generator described previously, so called 

normal zero-one N(0, 1) Gaussian random numbers < were produced with a theoretical 

NOMCOI AND PERT TIME HISTORIES 

-!* 0 .? * 0 0 

POSCTI 

FIG. 3. The nominal and four perturbed trajectories for the “Bullet Problem.” 
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mean of zero and variance of one. Hence, in order to maintain reasonably small 
perturbations about the nominal trajectory and to guarantee that 5” > 0 “almost 
always,” the following scaling values s, 

s, = 0.05 
sg = 0.10 
s, = 0.08 
sa = 0.07 

s, = 0.10 

DISPERSION FOOTPRINT 
.7 

Ia. I- 
- .1 -J w > I 

II I I I I I I I I I I I I I I I I I I I I I I 

‘Lb.5 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 0 0.5 I.0 t .5 P.0 

FIG. 4. The impact dispersion footprint for the “Bullet Problem”; a total of 600 impact points 
are plotted. 
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were introduced for each of the five parameters so the random components are then 
given by 

p’ = s,(. (48) 

To illustrate, Fig. 3 shows the nominal and four perturbed trajectories for the 
following “standard” case 

x0 = 6.0 vg = -2.0 tf = final time = 2~~ = 5.0. (49) 

Note that, since the approach is always towards the origin, the vertical axis is -v(r). 
Furthermore, several additional features are evident in Fig. 3 and can be understood 
by examining Eqs. (45) and (46). With the nominal values f10 = Q, = 0, both x(t) 
and v(t) + 0 as t -+ co while the random perturbations-which have fixed values 
for any given trajectory-only affect 

P v(0) = 210 - ; + LIE - sg 6 - 
2ciy (y. 

and not x(0) =- x0. 
Continuing, a so-called impact dispersion footprint is shown in Fig. 4 for the 

standard case defined previously in Eq. (49). Impact points for the nominal and 
600 perturbed trajectories are plotted here. Note that the final time tf is different for 
each perturbed trajectory by virtue of Eqs. (43) and (44). The nominal impact point 
has the coordinates 

x(t, = 5) = 0.84583 ... 

v(t, = 5) = -0.33832 . . . . 

Now, in order to apply the basic Chorin estimator to this problem, both the series 
truncation point [m in Eq. (9)] and the appropriate parameters to include in x must be 
determined. The total number of terms 

m = mh P> (50) 

in the p parameter Hermite polynomial expansion of the estimator is given in Table 1 
for various values of IZ. The quantity n is the highest order polynomial to be retained 
in the generalized orthonormal series; II = 0 corresponds then to standard (or Direct) 
Monte Carlo with the single constant polynomial Q0 = 1 independent of the number 
of parameters p. In particular, note how successive values are obtained by summing 
two neighboring quantities. For any n and p, a particularly elegant formula has been 
found 

111 = m(n, p) = “‘2’“’ (y)(f) = (” ; “) = (” ; “) = y,,)! (51) 
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where 
n 0 n. I 

I 
= binomial coefficient = I! (n _ I)! 

TABLE 1 

Maximum Number of Terms m(n,p) in the p - Parameter Hermite Series Expansion 

n 

0 2 3 4 
P (constant) (lin:ar) (quadratic) (cubic) (quark) 

1 1 2 3 4 5 

2 1 3 6 10 15 

3 1 4 10 20 35 

4 1 5 15 -+ J 35 70 

5 1 6 21 56 126 

To determine which of the 5 parameters to include in the Hermite expansion, 
numerical partial derivatives were computed about the nominal solution for the 
“standard” case specified in (49). Results are given in Table 2 below. Using this Table, 
the parameters were then ranked according to sensitivity and, after an extensive series 
of simulation runs to determine the parameter set maximizing variance reduction, 
the three quantities CX, /3 and y were chosen. Hence p == 3. Then computations were 
performed for various n = 1,2,... . 

TABLE 2 

Numerical Partial Derivatives 

Parameter 
P a b Y 6 E 

WAPP 0.10552 2.79692 -0.34329 0.15839 1.16538 

wm -0.12649 -0.91866 0.66545 -0.27451 0.03388 

Sample results from these calculations are shown in Figs. 5 to 8 for the mean 
position and velocity at tf produced using both the Direct estimator given in (I 2) and 
the basic Chorin estimator specified by (10) or (11). Also, for comparison, the 
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ONE-DIM MONTE CARLO SIMULATION 

.” 

.07 

I I, I, 1 I I I I I, 

I I I I I I I I I I I I 

.a 

.O” 0 
I 

100 000 SO0 woo 000 coo 
NUMBER OF SAMPLES I N 

FIG. 5. Three estimates for the position at the final time x(tt). The converged final value is 
x(1,) = 0.851... . 

Indirect Chorin estimate given by (13) is shown. Here n = 1 so m(1, 3) = 4. Note 
the convergence of all three estimators as N, the total number of sample trajectories, 
is increased. 

The payoff is shown in Figs. 6 and 8 where the Monte Carlo error variance for 
the position and velocity estimates is plotted as a function of trajectory sample size 
N. Even for small values of N < 60, the Chorin variance is far below the correspon- 
ding Direct variance and, moreover, this behavior is maintained continuously as N 
is increased. 
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ONE-DIM MONTE CARLO SIMULATION 

NUMBER OF SAMPLES . N 

FIG. 6. Monte Carlo error variances for the Direct and Chorin estimates. The exact value for the 
Chorin variance aca lies between the two bounding curves. 

Returning to Eq. (19), the Chorin variance is given by 

(52) 

withfeither x(t,) or v(tf). The lower bound shown in Figs. 6 and 8 is computed by 
simply neglecting the second order term. The upper bound is obtained by noting 
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ONE-DIM MONTE CARLO SIMULATION 

NUMBER OF SAMPLES . N 

FIG. 7. Three estimates for the velocity at the final time u(t,). The converged final value is o(r,) = 
-0.345... . 

The second model problem is considered now. This so called Deployment Dispersion 
Problem is defined by the 12 parameter function 

y = p. + Ax + $(xTBx)c (54) 

where 

y = 
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ONE-DIM MONTE CARLO SIMULATION 

I i i i i i i i i i i i i i i i i i i ii 

NUHBER OF SAMPLES . N 

FIG. 8. Monte Carlo error variances for the Direct and Chorin estimates. Note the ten-fold 
reduction in velocity error variance compared to the position error variance shown in Fig. 6. 

and 

XT c 
[Xl , x2 >-.., xJ is a twelve vector of input random errors 
resulting from four basic error sources 

A is a (3 x 12) matrix with constant entries 

B is a (12 x 12) ma:rix with constant entries 

p, c are three vectors with constant entries. 

This function was devised to simulate the effect of multiple error sources x on the 
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30 DEPLOYMENT MONTE CARLO 

NUMBER OF SAflPLE TRAJECTORIES . N 

FIG. 9. Direct (0) and Chorin (*) estimates of the quantity y, for the deployment dispersion 
function y = Ax + p. with E[yJ = 0. This linear problem has 5 terms in the correction series. 

resultant dispersion y of coasting trajectories in three dimensions after deployment 
from a post boost vehicle. For the Monte Carlo experiments, the principal purposes 
of this model were 

l To test numerically the dimension limitation when no initial transformation 
of input variables is performed. 

l To furnish a simple analytic structure so the Hermite polynomial expansion 
can be tailored exactly. 

#r/343-6 
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For the results shown in Figs. 9 to 11, the A and B matrices were chosen with all 
integer entries as follows 

100100100100 1 (5% 
123013203213 

B= 

1 1 
1 1 

1 1 
1 1 

1 1 
1 1 

1 1 
1 1 

1 1 
1 1 1 
1 1 1 
1 1 1 

(All other elements are 0.) (56) 

On the other hand, the vectors t.~ and c were chosen in two distinct ways. For the 
linear version y = Ax + t.~ illustrated in Figs. 9 and 10 

0 
p= 3; 

0 
c=o (57) 

6 

while, for the linear-quadratic problem shown in Fig. 11 

1 
p =o; c= 2 0 3 

(58) 

With these particular choices, the exact means, variances and covariances for the 
elements of y are easily computed since, in this problem, x is a 12 vector of un- 
correlated N(0, 1) random variables so 

E(q) = 0 
E(XiXJ = 2&j 

E(X$XjX,) = 0 
E(X,“Xj”) = 1 

and 
E(x:) = 3 (59) 

For future reference, the results are: 
Linear Problem Linear-Quadratic Problem 

E(YI) 0.0 3.0 
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3.0 6.0 

6.0 9.0 

4.0 22.25 

46.0 119.0 

51.0 215.25 

2.0 38.5 

5.0 59.75 

27.0 136.5 

30 DEPLOYMENT MONTE CARLO 

;s inwe 
I 

I I 

I I I I I I I I 
>Cbori)l E&m&e 1 1 1 

I I I Ii I I I I I I I 

I i ,a @ i i i i i i i i i i i i i i i i i i I 900 tom ,500 2000 
NUMBER OF SAMPLE TRAJECTORIES . N 

FIG. 10. Direct (0) and Chorin (*) estimates of the quantity y, for the deployment dispersion 
function y = Ax + p with Eb3] = 6. The correction series here contains 11 terms. 
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Because of the simple structure of this problem, the exact Hermite series expansion 
can be constructed easily. As an example, consider 

Yl = Xl + x4 + x7 t x10 (60) 

for the linear problem y = Ax + P. Since n = 1 is then the highest order polynomial 
to be retained in the expansion, IPZ = m(n, p) = pn(l, 12) = 13 is the full series length 
while, from (60), we see that only 5 terms are actually required. Similarly, for the 
linear-quadratic model illustrated in Fig. 11, the full series has m = 42, 12) = 91 
terms but, with exact correction, this is reduced to 36. 

30 DEPLOYMENT MONTE CARLO 

NUMBER OF SAMPLE TRAJECTORIES . N 

FIG. 1 I. Direct (0) and Chorin (*) estimates of the quantity y, for the deployment dispersion 
function y = Ax + &(xrBx)e with ELvr] = 9. As shown, this is a mixed linear-quadratic problem 
with a correction series of 36 terms. 
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As one can easily see from Figs. 9 to 11, the acceleration towards convergence is 
indeed dramatic. Furthermore, computations out to N = 4000 have shown that this 
behavior is uniformly and consistently maintained. Finally, fashioning the corrector 
series in advance to a specific problem then led to the idea of an Adaptive Series 
Selection Algorithm (ASSA) so that the same procedure could then be implemented 
automatically on the computer. This is discussed next. 

ADAPTIVE SERIES SELECTION 

For problems of high dimensionalityp, the basis set {@J of generalized orthonormal 
Hermite polynomials can become quite large if all the nonlinear interaction terms up 
to a given order n are included. Therefore, it is desirable to find some way of extracting 
a subset (GKi} which is not too large but which also approximates the functionfquite 
well. 

For purposes of illustration, we develop here a procedure using the basic Chorin 
estimator f * with Monte Carlo error variance uc2 given by 

UC2 = AM-’ + Blw2 (61) 

with N = 2M. First Eq. (61) is written in the more suggestive form 

Moc2 = a2 - zl 6~’ - M-h2) (62) 

This is the equivalent single sample variance reduction (or increase!) with M-lak2 
the M-sample error variance for the coefficient estimate & . Now (62) is again rewritten 
more compactly 

where 

MoC2 = u2 - F4 (63) 

A, n ak2- CT& (64) 

and 

ok, 2 M-1a,2 (65) 

Note that A, is then the single sample variance reduction associated with the kth 
term in the corrector series. 

It is now obvious that, to optimize the selection of terms giving the subset maxi- 
mizing variance reduction, one simply calculates N-sample Monte Carlo estimates a, 
and retains only these terms such that 6, > 0. The resulting error variance will be 

*c 2 = M-1 (02 - I* dk) (66) 
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where the sum C* is over the index subset 

{kc , 1 d ki < m(n, p)> such that ak, > 0. 

The theoretical optimal subset {d,$] is referred to as the “variance reduction 
spectrum” since 

Aki = a& - (J&< > 0 (67) 

The general problem of identifying and estimating the variance reduction spectrum 
as well as determining the errors in this procedure will be discussed in a future paper. 
Also, this leads to the further interesting idea of linear or nonlinear measure- 
preserving transformations of the random input vector x 

z=Sx or z = T(x) (68) 

such that the variance reduction spectrum is focused as sharply as possible. In fact, 
initial calculations with the Deployment Dispersion Function have shown significant 
additional variance reduction after application of an appropriate measure-preserving 
transformation. 

COMPUTATIONAL CONSIDERATIONS 

The basic Chorin estimator is linear in the trajectory solutions h = f(xJ, 
i = 1, 2,..., N while the symmetric Chorin estimator is linear in h = f(xJ and fi = 
j-(x;), i = 1, 2 )...) M with N = 2M. The tri-symmetric Chorin estimator is linear in 
fi =f(xJ, f: = f(x$ andf; =f(x;), i = 1, 2 ,..., M where N = 3M. These estimators 
all have the same general computational form, namely, they are linear weightings of 
the trajectory solutions. In these linear forms, the weighting coefficients are polynomial 
functions of the sample sets S = {xi, i = 1, 2 ,..., N}, (S, S’) = {(xi, xi), i = 1, 
2 ,..., M = N/2} and (S, S’, 9’) = {(xi, xi, xi”), i = 1, 2 ,..., M = N/3} for the three 
estimators f *, f & and f gs;c respectively. 

First considering the basic Chorin estimator, the linear form infis obtained from 
Eq. (15) above as follows: 

(69) 

with the fixed weight w0 = M-l and the variable weights W: A -M-l CT @,(x;) t& 
where #, b M-l Cy @,(xJ. 
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The linear form for this estimator is 

f&c = 5 (v& + v;f ‘i + v;f ;) 
1 

with the following (stored) weighting values 

lJ* = 
wo + M’i 

3 

v’ = wo + 4 2 3 

vi” = w. + WY 
3 

(74) 

(75) 

For this estimator w. = M-l as before but the individual weights are 

wi & -M-l 5 q.(XJ 4; 
k=l 

w; & -M-l 5 t&(X;) 4$ 
k=l 

(76) 

where 

(77) 

In each of the Eqs. (69), (71) and (74) for the three estimators, the fundamental 
weighting quantities all have the form 

wi = -M-l 2 @k(XJ d;;, 
1 

where 

#; = M-l 2 Qk(x;) 
1 
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There are recursion relations for !& [see, for example, Eq. (7)] which could then be 
used to construct recursion relations for the intermediate component weights wi . 
The final weights vi , which are obtained from (72) and (75), can then either be used 
on-line or precomputed and stored for future use. 

There is a trade between pre-stored weights and on-line generation of the weighting 
coefficients. This trade depends upon the available computer storage capacity and 
machine processing time required to generate each trajectory solution fi. In general, 
if individual trajectories require a significant amount of machine time, the additional 
computer time needed for on-line generation of the weights wi would be insignificant. 
On the other hand, for large scale, dedicated computer facilities, substantial overall 
speed advantages may be realized by using pre-computed weighting arrays prepared 
for different classes of problems. 

CONCLUSIONS 

In conclusion, these Hermite polynomial expansions are easy to manipulate, 
well-conditioned, and have good convergence properties. (Here, convergence is in the 
mean square error sense). Smoothing is consequently global rather than local as is 
characteristic of finite difference methods of numerical analysis. The exact reduction 
in Monte Carlo error depends upon how well the approximating Hermite series 
converges and how many individual terms are included in the series expansion. 
Furthermore, as is shown most clearly in Eqs. (40), there is a delicate interplay between 
how important a given term is in the resulting polynomial approximation to the 
estimand (net reduction in the mean-square remainder A) and how accurately the 
given term can be determined (net reduction in the sum of the coefficient error 
variances B). 

For the Monte Carlo computer experiments, the principal purpose of the two 
models was to test numerically the variance reduction properties of various extended 
Chorin estimators. As one can easily see from the computational results shown in 
Figs. 6 and 8 to 11, this acceleration towards convergence can indeed be dramatic. 

As a consequence of these significant reductions in Monte Carlo error, the use of 
orthonormal function space expansions is proposed as a bona-fide convergence 
acceleration device. This is a departure from conventional Monte Carlo computations 
since they have generally been considered to possess rather low precision and variance 
reduction devices have not been employed very often in actual practice. 
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